

Hemoglobin	Oxygen carrying molecule	>13.5 g/dL in men, > 12 g/dL in women
Hematocrit	Packed cell volume	>41% in men, >36% in women
Mean Corpuscular Volume (MCV)	Average size of the patient's RBC	80-95 fL
Mean Corpuscular Hb (MCH)	Average Hb content per RBC	25-32 pg
Mean Corpuscular Hb Concentration (MCHC)	Average [Hb] per RBC	32- 35 g/dL
Red cell distribution width (RDW)	Measure of RBC size variation (anisocytosis)	11-14 %
Reticulocyte count	% of RBC	0.8-1.5%
Absolute retic count	Relative reticulocyte count x RBC count	Normal 50,000– 75,000/µl

Anemia with low/normal generative count Low MCV (microcytosis) Iron deficiency Anemia of chronic disease Lead intoxication Sideroblastic anemia Mormal MCV Anemia of chronic kidney disease Medications Infections High MCV (macrocytosis) Vitamin B12 and/or folate deficiency Medications Liver disease, ETOH Thyroid disease

Iron deficiency anemia

- Public health problem huge variation around the world
- Affects most commonly children aged 0-5 years, women of childbearing age and pregnant women
- Major cause of disability globally

Iron Intake

- Recommended dietary iron:
 - Ages 9-13: 8 mg
 - Ages 14 -18: 11 mg for boys and 15 mg for girls
 - > 19: 8 mg for men, 18 mg for women (until age 50)
 - Pregnant women: 30 mg
- Main source of iron intake is meat (especially red meat)

Diagnosis: Symptoms

- Pica (25%): Compulsive ingestion of a non-food substance such as starch, clay, ground, ice
- Beeturia (49-80%): urine turns red after ingestion of beets
- Restless legs syndrome (10%): Urge to move the legs usually accompanied by uncomfortable sensations that begins or worsens during periods of rest and relieved by movement. Worse in the evening/night

Diag	nosis: Labora	to	ry
Test		IDA	ACD
Iron	Measures circulating iron bound to transferrin. NOT a marker of iron status (will change with even just one meal)	↓	↓
Transferrin (TIBC)	Circulating transport protein for iron	1	Ļ
Transferrin saturation	Serum iron ÷ TIBC x 100	$\downarrow\downarrow$	Ļ
Ferritin	Circulating iron storage protein, acute phase reactant. Best value for iron deficiency	Ţ	↑

Avai	lable	Oral	Iron
S	upple	men	ts

Oral iron preparations	Typical dose (mg)	Elemental iron (mg)	Approx. cost to give 5000 mg
Ferrous sulfate (also has elixir version)	325 mg tid	65	\$10.00
Ferrous gluconate	300 mg tid	36	\$7-8.00
Ferrous fumarate	100 mg tid	33	\$8.00-9.50
Iron polysaccharide complex	150 mg bid	150	\$11.00
Carbonyl iron	50 mg tid	50	\$18.00

- Intolerance/Noncompliance (~30% discontinue)
- Persistent blood loss
- Decreased iron absorption
- Chronic inflammation or bone marrow damage
- Chronic kidney disease

	IV	Iron	
Drug	Trade (brand) name	Concentration of elemental iron	Dosing (adults)
Ferric carboxymaltose (FCM)	Injectafer, Ferinject	50 mg/mL	Two doses, given seven or more days apart
Ferric gluconate (FG)	Ferrlecit	12.5 mg/mL	Multiple doses
Ferumoxytol [¶]	Feraheme	30 mg/mL	Single dose or two doses given 3-8 days apart
Iron dextran, low molecular weight (LMW ID) [∆]	INFeD, CosmoFer	50 mg/mL	Multiple doses or one single dose
Iron isomaltoside ^{Δ}	Monofer	100 mg/mL	Single dose or up to three doses given over seven days
Iron sucrose (IS)	Venofer	20 mg/mL	Multiple doses

Anemia of Inflammation

- Decreased RBC production + decreased RBC survival
- Reduced iron absorption in the GI tract and trapping of iron in macrophages
- Relative decrease in EPO production
- Decrease bone marrow response to EPO mediated by inflammatory cytokines

Treatment Options for Anemia of Chronic Disease

- Treat the underlying diseases
- RBC Transfusions
- For anemia of chronic kidney disease:
 - Erythroid-stimulating agents (ESA) and potentially iron supplementation (ferritin <100 and/or iron sat <20%)

Megaloblastic Anemia

- Defect in DNA synthesis
- RNA synthesis is relatively unimpaired
 - RBC's hemoglobin production is far ahead of nuclear maturation
 - Nuclear cytoplasmic dissociation
- Ineffective erythropoiesis
 - Intramedullary hemolysis
 - Decreased red cell survival/misshapen cells

Vitamin B12 and folate

Vitamin B12

- Sources: dietary meat products
- Daily requirement 2-5 ug/day
- If intake stops, takes 2-3 years for storage to be depleted
- Requires IF produced by gastric cells for absorption in ileum

Folate

- Sources: green leafy vegetables
- Daily requirement about 50-100 ug/day
- Reserves last 3-4 months
- Absorbed in jejunum and ileum

Miscellaneous: Bone marrow process

- Broad DDx, including
 - Acute or chronic leukemia
 - Myelodysplastic syndrome (MDS)
 - Myeloproliferative diseases (MPD)
 - Involvement of malignancies in the bone marrow
 - Disseminated infections in the bone marrow
- Patients usually have more symptoms such as unexplained weight loss, petechiae, fever, hepatosplenomegaly, etc
- More than one cell line is abnormal and could be severe
- Referral to hematology and bone marrow biopsy is needed for definitive diagnosis

Anemia with high reticulocyte count

- Normal/High MCV
 - Acute hemorrhage
 - Hemolytic Anemia
 - Autoimmune
 - Microangiopathic Hemolytic Anemia
 - Hemoglobinopathies
 - Membranopathies/enzymopathies
- Low MCV (microcytosis)
 - Hemoglobinopathies

Warm-Antibody Hemolytic Anemias Etiology

- Primary or Secondary
 - Drugs
 - Solid or hematologic malignancy
 - Infection
 - Collagen Disease
 - Pregnancy
 - Can be associated with immune

platelet destruction = Evan's syndrome

Warm-Antibody Hemolytic Anemias Clinical Features

- Splenomegaly, jaundice is usually present
- Depending on degree of anemia and <u>rate of</u> <u>fall</u> in hemoglobin, patients can have VERY symptomatic anemia
- Lab Dx -
 - ↑reticulocytes, ↑ bili, ↑ LDH, ↓haptoglobin
 - Positive Coomb's test both direct and indirect
 - Spherocytes are seen on the peripheral smear

WAIHA: Treatment

2nd Line Therapy

- Splenectomy
- Rituxan
- **Other Therapies**
 - Danazol
 - Cyclophosphamide
 - Mycophenolate Mofetil
 - Cyclosporine
 - Vincristine
 - Alemtuzumab
 - Ofatumumab •

Lechner et al. How I Treat Autoimmne Hemolytic Anemia. Blood 2010. Crowther et al. Evidence-based focused review of the treatment of idiopathic warm immune hemolytic anemia in adults. Blood 2011

- Ineffective therapies
 - **Azathioprine**
 - BMT •
 - **IVIG** •
 - **Plasma Exchange** •

Drug-Induced Immune Hemolysis Three general mechanisms Innocent bystander Quinine, Quinidine, Isoniazide Hapten Penicillins, Cephalosporins True autoimmune Alpha-methyldopa, L-DOPA, **Procainamide**

Drug Ar	g-Induced P ntiglobulin 1	ositive Tests
Mechanism	DAT	Serum and Eluate
Neoantigen -Drug +RBC complex	C3 (sometimes IgG also)	Serum reacts with rbcs only in the presence of drug; eluate non- reactive
Drug Adsorption (DA) -Drug binds to RBC	lgG (sometimes C3 also)	React with drug-coated RBCs but not untreated RBCs- Ab to drug
Autoantibodies -WAIHA	lgG (rarely C3 also) 11-36% of pts	React with normal RBCs in absence of drug

Cold Agglutinin Disease

- In the cold, IgM can lead to red cell agglutination
- Red cells clumps cannot pass through microvasculature, leading to cyanosis and ischemia in extremities

John Lazarchick, ASH Image Bank 2011; 2011-1053

Cold Agglutinin Disease Clinical features

 Can be associated with infection with either Mycoplasma or Mononucleosis

- Can also be idiopathic or associated with a Lymphoproliferative disease
 - Most commonly IgM monoclonal gammopathy
 - Lymphoma (may only be BM involvement)

Cold Agglutinin Disease Treatment

- Treatment is to keep patient (especially the extremities) warm. Blood and IV fluids should be warmed.
- Immunosuppression with oral chemotherapy may be required
- Steroids and splenectomy are <u>usually</u> <u>ineffective.</u>
- Rituximab (PR in 20/27 patients)
- If Rituximab Refractory, can consider Eculizumab or Bortezomib

Tre	eatme	ent All	A
	WAIHA	CAD	Drug-IHA
1 st Line	Folate Corticosteroids	Folate Avoid cold Treat secondary cause	Treat if hemolysis present
2 nd Line	Splenectomy Rituxan	Chlorambucil	Folate Stop drugs
3 rd Line	Other Cytotoxic Drugs	Plasmapheresis?	Corticosteroids- severe cases
Transfusion Recommendations	Transfuse – least incompatible	Transfuse- I+, blood warmer	Transfuse

Microangiopathic Hemolytic Anemia

Non-immune hemolytic anemia

- ↑reticulocytes, ↑ bili, ↑ LDH, ↓haptoglobin
- NEGATIVE Coomb's
- Prosthetic Valves, Heart valve induced, Pregnancy Associated Syndrome, HTN, Infections, Immune D/os, DIC
- Thrombotic Microangiopathy
 - TTP, aHUS, HUS, Drug-Induced TMA

Structural abnormalities of Hb

- Thalassemia
- Sickle Cell disease
- G6PD deficiency
- Hereditary Spherocytosis

Jame	Genotype	Percent
Homozygous SS (Sickle Cell Anemia)	β ^s -β ^s	65
Heterozygous SC	β ^s - β ^c	24
Heterozygous S-β⁺ thal	β ^s - β ⁺ thal	7
Heterozygous S-β [°] thal	β ^s - β° thal	3

Red blood cell transfusions in hospitalized patients

- < 8 g/dL
 - Preexisting CAD
 - ACS (8-10 g/dL)
 - Cardiac surgery
- <7 g/dL
 - Non cardiac surgery
 - Intensive care unit
 - GIB